nurses_multiobj.py¶
This example solves the problem of finding an optimal assignment of nurses to shifts, using multi-objectives. Instead of minimizing an overall cost made of salary cost, fairness and number of assignments, we use COS 12.9 multiobjective solve to specify the 3 kpis.
This sample require COS 12.9.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 | # --------------------------------------------------------------------------
# Source file provided under Apache License, Version 2.0, January 2004,
# http://www.apache.org/licenses/
# (c) Copyright IBM Corp. 2015, 2018
# --------------------------------------------------------------------------
from collections import namedtuple
from docplex.mp.model import Model
from docplex.mp.constants import ObjectiveSense
from docplex.util.environment import get_environment
# ----------------------------------------------------------------------------
# Initialize the problem data
# ----------------------------------------------------------------------------
# utility to convert a weekday string to an index in 0..6
_all_days = ["monday",
"tuesday",
"wednesday",
"thursday",
"friday",
"saturday",
"sunday"]
def day_to_day_week(day):
day_map = {day: d for d, day in enumerate(_all_days)}
return day_map[day.lower()]
TWorkRules = namedtuple("TWorkRules", ["work_time_max"])
TVacation = namedtuple("TVacation", ["nurse", "day"])
TNursePair = namedtuple("TNursePair", ["firstNurse", "secondNurse"])
TSkillRequirement = namedtuple("TSkillRequirement", ["department", "skill", "required"])
NURSES = [("Anne", 11, 1, 25),
("Bethanie", 4, 5, 28),
("Betsy", 2, 2, 17),
("Cathy", 2, 2, 17),
("Cecilia", 9, 5, 38),
("Chris", 11, 4, 38),
("Cindy", 5, 2, 21),
("David", 1, 2, 15),
("Debbie", 7, 2, 24),
("Dee", 3, 3, 21),
("Gloria", 8, 2, 25),
("Isabelle", 3, 1, 16),
("Jane", 3, 4, 23),
("Janelle", 4, 3, 22),
("Janice", 2, 2, 17),
("Jemma", 2, 4, 22),
("Joan", 5, 3, 24),
("Joyce", 8, 3, 29),
("Jude", 4, 3, 22),
("Julie", 6, 2, 22),
("Juliet", 7, 4, 31),
("Kate", 5, 3, 24),
("Nancy", 8, 4, 32),
("Nathalie", 9, 5, 38),
("Nicole", 0, 2, 14),
("Patricia", 1, 1, 13),
("Patrick", 6, 1, 19),
("Roberta", 3, 5, 26),
("Suzanne", 5, 1, 18),
("Vickie", 7, 1, 20),
("Wendie", 5, 2, 21),
("Zoe", 8, 3, 29)
]
SHIFTS = [("Emergency", "monday", 2, 8, 3, 5),
("Emergency", "monday", 8, 12, 4, 7),
("Emergency", "monday", 12, 18, 2, 5),
("Emergency", "monday", 18, 2, 3, 7),
("Consultation", "monday", 8, 12, 10, 13),
("Consultation", "monday", 12, 18, 8, 12),
("Cardiac_Care", "monday", 8, 12, 10, 13),
("Cardiac_Care", "monday", 12, 18, 8, 12),
("Emergency", "tuesday", 8, 12, 4, 7),
("Emergency", "tuesday", 12, 18, 2, 5),
("Emergency", "tuesday", 18, 2, 3, 7),
("Consultation", "tuesday", 8, 12, 10, 13),
("Consultation", "tuesday", 12, 18, 8, 12),
("Cardiac_Care", "tuesday", 8, 12, 4, 7),
("Cardiac_Care", "tuesday", 12, 18, 2, 5),
("Cardiac_Care", "tuesday", 18, 2, 3, 7),
("Emergency", "wednesday", 2, 8, 3, 5),
("Emergency", "wednesday", 8, 12, 4, 7),
("Emergency", "wednesday", 12, 18, 2, 5),
("Emergency", "wednesday", 18, 2, 3, 7),
("Consultation", "wednesday", 8, 12, 10, 13),
("Consultation", "wednesday", 12, 18, 8, 12),
("Emergency", "thursday", 2, 8, 3, 5),
("Emergency", "thursday", 8, 12, 4, 7),
("Emergency", "thursday", 12, 18, 2, 5),
("Emergency", "thursday", 18, 2, 3, 7),
("Consultation", "thursday", 8, 12, 10, 13),
("Consultation", "thursday", 12, 18, 8, 12),
("Emergency", "friday", 2, 8, 3, 5),
("Emergency", "friday", 8, 12, 4, 7),
("Emergency", "friday", 12, 18, 2, 5),
("Emergency", "friday", 18, 2, 3, 7),
("Consultation", "friday", 8, 12, 10, 13),
("Consultation", "friday", 12, 18, 8, 12),
("Emergency", "saturday", 2, 12, 5, 7),
("Emergency", "saturday", 12, 20, 7, 9),
("Emergency", "saturday", 20, 2, 12, 12),
("Emergency", "sunday", 2, 12, 5, 7),
("Emergency", "sunday", 12, 20, 7, 9),
("Emergency", "sunday", 20, 2, 12, 12),
("Geriatrics", "sunday", 8, 10, 2, 5)]
NURSE_SKILLS = {"Anne": ["Anaesthesiology", "Oncology", "Pediatrics"],
"Betsy": ["Cardiac_Care"],
"Cathy": ["Anaesthesiology"],
"Cecilia": ["Anaesthesiology", "Oncology", "Pediatrics"],
"Chris": ["Cardiac_Care", "Oncology", "Geriatrics"],
"Gloria": ["Pediatrics"], "Jemma": ["Cardiac_Care"],
"Joyce": ["Anaesthesiology", "Pediatrics"],
"Julie": ["Geriatrics"], "Juliet": ["Pediatrics"],
"Kate": ["Pediatrics"], "Nancy": ["Cardiac_Care"],
"Nathalie": ["Anaesthesiology", "Geriatrics"],
"Patrick": ["Oncology"], "Suzanne": ["Pediatrics"],
"Wendie": ["Geriatrics"],
"Zoe": ["Cardiac_Care"]
}
VACATIONS = [("Anne", "friday"),
("Anne", "sunday"),
("Cathy", "thursday"),
("Cathy", "tuesday"),
("Joan", "thursday"),
("Joan", "saturday"),
("Juliet", "monday"),
("Juliet", "tuesday"),
("Juliet", "thursday"),
("Nathalie", "sunday"),
("Nathalie", "thursday"),
("Isabelle", "monday"),
("Isabelle", "thursday"),
("Patricia", "saturday"),
("Patricia", "wednesday"),
("Nicole", "friday"),
("Nicole", "wednesday"),
("Jude", "tuesday"),
("Jude", "friday"),
("Debbie", "saturday"),
("Debbie", "wednesday"),
("Joyce", "sunday"),
("Joyce", "thursday"),
("Chris", "thursday"),
("Chris", "tuesday"),
("Cecilia", "friday"),
("Cecilia", "wednesday"),
("Patrick", "saturday"),
("Patrick", "sunday"),
("Cindy", "sunday"),
("Dee", "tuesday"),
("Dee", "friday"),
("Jemma", "friday"),
("Jemma", "wednesday"),
("Bethanie", "wednesday"),
("Bethanie", "tuesday"),
("Betsy", "monday"),
("Betsy", "thursday"),
("David", "monday"),
("Gloria", "monday"),
("Jane", "saturday"),
("Jane", "sunday"),
("Janelle", "wednesday"),
("Janelle", "friday"),
("Julie", "sunday"),
("Kate", "tuesday"),
("Kate", "monday"),
("Nancy", "sunday"),
("Roberta", "friday"),
("Roberta", "saturday"),
("Janice", "tuesday"),
("Janice", "friday"),
("Suzanne", "monday"),
("Vickie", "wednesday"),
("Vickie", "friday"),
("Wendie", "thursday"),
("Wendie", "saturday"),
("Zoe", "saturday"),
("Zoe", "sunday")]
NURSE_ASSOCIATIONS = [("Isabelle", "Dee"),
("Anne", "Patrick")]
NURSE_INCOMPATIBILITIES = [("Patricia", "Patrick"),
("Janice", "Wendie"),
("Suzanne", "Betsy"),
("Janelle", "Jane"),
("Gloria", "David"),
("Dee", "Jemma"),
("Bethanie", "Dee"),
("Roberta", "Zoe"),
("Nicole", "Patricia"),
("Vickie", "Dee"),
("Joan", "Anne")
]
SKILL_REQUIREMENTS = [("Emergency", "Cardiac_Care", 1)]
DEFAULT_WORK_RULES = TWorkRules(40)
# ----------------------------------------------------------------------------
# Prepare the data for modeling
# ----------------------------------------------------------------------------
# subclass the namedtuple to refine the str() method as the nurse's name
class TNurse(namedtuple("TNurse1", ["name", "seniority", "qualification", "pay_rate"])):
def __str__(self):
return self.name
# specialized namedtuple to redefine its str() method
class TShift(namedtuple("TShift",
["department", "day", "start_time", "end_time", "min_requirement", "max_requirement"])):
def __str__(self):
# keep first two characters in department, uppercase
dept2 = self.department[0:4].upper()
# keep 3 days of weekday
dayname = self.day[0:3]
return '{}_{}_{:02d}'.format(dept2, dayname, self.start_time).replace(" ", "_")
class ShiftActivity(object):
@staticmethod
def to_abstime(day_index, time_of_day):
""" Convert a pair (day_index, time) into a number of hours since Monday 00:00
:param day_index: The index of the day from 1 to 7 (Monday is 1).
:param time_of_day: An integer number of hours.
:return:
"""
time = 24 * (day_index - 1)
time += time_of_day
return time
def __init__(self, weekday, start_time_of_day, end_time_of_day):
assert (start_time_of_day >= 0)
assert (start_time_of_day <= 24)
assert (end_time_of_day >= 0)
assert (end_time_of_day <= 24)
self._weekday = weekday
self._start_time_of_day = start_time_of_day
self._end_time_of_day = end_time_of_day
# conversion to absolute time.
start_day_index = day_to_day_week(self._weekday)
self.start_time = self.to_abstime(start_day_index, start_time_of_day)
end_day_index = start_day_index if end_time_of_day > start_time_of_day else start_day_index + 1
self.end_time = self.to_abstime(end_day_index, end_time_of_day)
assert self.end_time > self.start_time
@property
def duration(self):
return self.end_time - self.start_time
def overlaps(self, other_shift):
if not isinstance(other_shift, ShiftActivity):
return False
else:
return other_shift.end_time > self.start_time and other_shift.start_time < self.end_time
def solve(model, **kwargs):
# Here, we set the number of threads for CPLEX to 2 and set the time limit to 2mins.
if kwargs.pop('parameter_sets', None) == None:
model.parameters.threads = 2
model.parameters.mip.tolerances.mipgap = 0.000001
model.parameters.timelimit = 120 # nurse should not take more than that !
sol = model.solve(log_output=True, **kwargs)
if sol is not None:
print("solution for a cost of {}".format(model.objective_value))
print_information(model)
# print_solution(model)
return model.objective_value
else:
print("* model is infeasible")
return None
def load_data(model, shifts_, nurses_, nurse_skills, vacations_=None,
nurse_associations_=None, nurse_imcompatibilities_=None):
""" Usage: load_data(shifts, nurses, nurse_skills, vacations) """
model.number_of_overlaps = 0
model.work_rules = DEFAULT_WORK_RULES
model.shifts = [TShift(*shift_row) for shift_row in shifts_]
model.nurses = [TNurse(*nurse_row) for nurse_row in nurses_]
model.skill_requirements = SKILL_REQUIREMENTS
model.nurse_skills = nurse_skills
# transactional data
model.vacations = [TVacation(*vacation_row) for vacation_row in vacations_] if vacations_ else []
model.nurse_associations = [TNursePair(*npr) for npr in nurse_associations_]\
if nurse_associations_ else []
model.nurse_incompatibilities = [TNursePair(*npr) for npr in nurse_imcompatibilities_]\
if nurse_imcompatibilities_ else []
# computed
model.departments = set(sh.department for sh in model.shifts)
print('#nurses: {0}'.format(len(model.nurses)))
print('#shifts: {0}'.format(len(model.shifts)))
print('#vacations: {0}'.format(len(model.vacations)))
print("#associations=%d" % len(model.nurse_associations))
print("#incompatibilities=%d" % len(model.nurse_incompatibilities))
def setup_data(model):
""" compute internal data """
# compute shift activities (start, end duration) and stor ethem in a dict indexed by shifts
model.shift_activities = {s: ShiftActivity(s.day, s.start_time, s.end_time) for s in model.shifts}
# map from nurse names to nurse tuples.
model.nurses_by_id = {n.name: n for n in model.nurses}
def setup_variables(model):
all_nurses, all_shifts = model.nurses, model.shifts
# one binary variable for each pair (nurse, shift) equal to 1 iff nurse n is assigned to shift s
model.nurse_assignment_vars = model.binary_var_matrix(all_nurses, all_shifts, 'NurseAssigned')
# for each nurse, allocate one variable for work time
model.nurse_work_time_vars = model.continuous_var_dict(all_nurses, lb=0, name='NurseWorkTime')
# and two variables for over_average and under-average work time
model.nurse_over_average_time_vars = model.continuous_var_dict(all_nurses, lb=0,
name='NurseOverAverageWorkTime')
model.nurse_under_average_time_vars = model.continuous_var_dict(all_nurses, lb=0,
name='NurseUnderAverageWorkTime')
# finally the global average work time
model.average_nurse_work_time = model.continuous_var(lb=0, name='AverageWorkTime')
def setup_constraints(model):
all_nurses = model.nurses
all_shifts = model.shifts
nurse_assigned = model.nurse_assignment_vars
nurse_work_time = model.nurse_work_time_vars
shift_activities = model.shift_activities
nurses_by_id = model.nurses_by_id
max_work_time = model.work_rules.work_time_max
# define average
model.add_constraint(
len(all_nurses) * model.average_nurse_work_time == model.sum(nurse_work_time[n] for n in all_nurses), "average")
# compute nurse work time , average and under, over
for n in all_nurses:
work_time_var = nurse_work_time[n]
model.add_constraint(
work_time_var == model.sum(nurse_assigned[n, s] * shift_activities[s].duration for s in all_shifts),
"work_time_{0!s}".format(n))
# relate over/under average worktime variables to the worktime variables
# the trick here is that variables have zero lower bound
# however, thse variables are not completely defined by this constraint,
# only their difference is.
# if these variables are part of the objective, CPLEX wil naturally minimize their value,
# as expected
model.add_constraint(
work_time_var == model.average_nurse_work_time
+ model.nurse_over_average_time_vars[n]
- model.nurse_under_average_time_vars[n],
"average_work_time_{0!s}".format(n))
# state the maximum work time as a constraint, so that is can be relaxed,
# should the problem become infeasible.
model.add_constraint(work_time_var <= max_work_time, "max_time_{0!s}".format(n))
# vacations
v = 0
for vac_nurse_id, vac_day in model.vacations:
vac_n = nurses_by_id[vac_nurse_id]
for shift in (s for s in all_shifts if s.day == vac_day):
v += 1
model.add_constraint(nurse_assigned[vac_n, shift] == 0,
"medium_vacations_{0!s}_{1!s}_{2!s}".format(vac_n, vac_day, shift))
#print('#vacation cts: {0}'.format(v))
# a nurse cannot be assigned overlapping shifts
# post only one constraint per couple(s1, s2)
number_of_overlaps = 0
nb_shifts = len(all_shifts)
for i1 in range(nb_shifts):
for i2 in range(i1 + 1, nb_shifts):
s1 = all_shifts[i1]
s2 = all_shifts[i2]
if shift_activities[s1].overlaps(shift_activities[s2]):
number_of_overlaps += 1
for n in all_nurses:
model.add_constraint(nurse_assigned[n, s1] + nurse_assigned[n, s2] <= 1,
"high_overlapping_{0!s}_{1!s}_{2!s}".format(s1, s2, n))
#print('# overlapping cts: {0}'.format(number_of_overlaps))
for s in all_shifts:
demand_min = s.min_requirement
demand_max = s.max_requirement
total_assigned = model.sum(nurse_assigned[n, s] for n in model.nurses)
model.add_constraint(total_assigned >= demand_min,
"high_req_min_{0!s}_{1}".format(s, demand_min))
model.add_constraint(total_assigned <= demand_max,
"medium_req_max_{0!s}_{1}".format(s, demand_max))
for (dept, skill, required) in model.skill_requirements:
if required > 0:
for dsh in (s for s in all_shifts if dept == s.department):
model.add_constraint(model.sum(nurse_assigned[skilled_nurse, dsh] for skilled_nurse in
(n for n in all_nurses if
n.name in model.nurse_skills.keys() and skill in model.nurse_skills[
n.name])) >= required,
"high_required_{0!s}_{1!s}_{2!s}_{3!s}".format(dept, skill, required, dsh))
# nurse-nurse associations
# for each pair of associated nurses, their assignment variables are equal
# over all shifts.
c = 0
for (nurse_id1, nurse_id2) in model.nurse_associations:
if nurse_id1 in nurses_by_id and nurse_id2 in nurses_by_id:
nurse1 = nurses_by_id[nurse_id1]
nurse2 = nurses_by_id[nurse_id2]
for s in all_shifts:
c += 1
ctname = 'medium_ct_nurse_assoc_{0!s}_{1!s}_{2:d}'.format(nurse_id1, nurse_id2, c)
model.add_constraint(nurse_assigned[nurse1, s] == nurse_assigned[nurse2, s], ctname)
# nurse-nurse incompatibilities
# for each pair of incompatible nurses, the sum of assigned variables is less than one
# in other terms, both nurses can never be assigned to the same shift
c = 0
for (nurse_id1, nurse_id2) in model.nurse_incompatibilities:
if nurse_id1 in nurses_by_id and nurse_id2 in nurses_by_id:
nurse1 = nurses_by_id[nurse_id1]
nurse2 = nurses_by_id[nurse_id2]
for s in all_shifts:
c += 1
ctname = 'medium_ct_nurse_incompat_{0!s}_{1!s}_{2:d}'.format(nurse_id1, nurse_id2, c)
model.add_constraint(nurse_assigned[nurse1, s] + nurse_assigned[nurse2, s] <= 1, ctname)
model.total_number_of_assignments = model.sum(nurse_assigned[n, s] for n in all_nurses for s in all_shifts)
model.nurse_costs = [model.nurse_assignment_vars[n, s] * n.pay_rate * model.shift_activities[s].duration for n in
model.nurses
for s in model.shifts]
model.total_salary_cost = model.sum(model.nurse_costs)
def setup_objective(model):
model.add_kpi(model.total_salary_cost, "Total salary cost")
model.add_kpi(model.total_number_of_assignments, "Total number of assignments")
model.add_kpi(model.average_nurse_work_time, "average work time")
total_over_average_worktime = model.sum(model.nurse_over_average_time_vars[n] for n in model.nurses)
total_under_average_worktime = model.sum(model.nurse_under_average_time_vars[n] for n in model.nurses)
model.add_kpi(total_over_average_worktime, "Total over-average worktime")
model.add_kpi(total_under_average_worktime, "Total under-average worktime")
total_fairness = total_over_average_worktime + total_under_average_worktime
model.add_kpi(total_fairness, "Total fairness")
model.minimize_static_lex([model.total_salary_cost, total_fairness, model.total_number_of_assignments])
def print_information(model):
print("#shifts=%d" % len(model.shifts))
print("#nurses=%d" % len(model.nurses))
print("#vacations=%d" % len(model.vacations))
print("#nurse skills=%d" % len(model.nurse_skills))
print("#nurse associations=%d" % len(model.nurse_associations))
print("#incompatibilities=%d" % len(model.nurse_incompatibilities))
model.print_information()
model.report_kpis()
def print_solution(model):
print("*************************** Solution ***************************")
print("Allocation By Department:")
for d in model.departments:
print("\t{}: {}".format(d, sum(
model.nurse_assignment_vars[n, s].solution_value for n in model.nurses for s in model.shifts if
s.department == d)))
print("Cost By Department:")
for d in model.departments:
cost = sum(
model.nurse_assignment_vars[n, s].solution_value * n.pay_rate * model.shift_activities[s].duration for n in
model.nurses for s in model.shifts if s.department == d)
print("\t{}: {}".format(d, cost))
print("Nurses Assignments")
for n in sorted(model.nurses):
total_hours = sum(
model.nurse_assignment_vars[n, s].solution_value * model.shift_activities[s].duration for s in model.shifts)
print("\t{}: total hours:{}".format(n.name, total_hours))
for s in model.shifts:
if model.nurse_assignment_vars[n, s].solution_value == 1:
print("\t\t{}: {} {}-{}".format(s.day, s.department, s.start_time, s.end_time))
# ----------------------------------------------------------------------------
# Build the model
# ----------------------------------------------------------------------------
def build(context=None, **kwargs):
mdl = Model("Nurses", context=context, **kwargs)
load_data(mdl, SHIFTS, NURSES, NURSE_SKILLS, VACATIONS, NURSE_ASSOCIATIONS,
NURSE_INCOMPATIBILITIES)
setup_data(mdl)
setup_variables(mdl)
setup_constraints(mdl)
setup_objective(mdl)
return mdl
# ----------------------------------------------------------------------------
# Solve the model and display the result
# ----------------------------------------------------------------------------
if __name__ == '__main__':
# Build model
model = build()
# Solve the model and print solution
solve(model)
print(model.solve_details)
# Save the CPLEX solution as "solution.json" program output
with get_environment().get_output_stream("solution.json") as fp:
model.solution.export(fp, "json")
model = build()
paramsets = model.build_multiobj_paramsets(timelimits=[70,60,50] , mipgaps=[0.000003, 0.000002, 0.000001])
solve(model, clean_before_solve=True, parameter_sets=paramsets)
print(model.solve_details)
model = build()
paramsets = model.create_parameter_sets()
cplex = model.get_cplex()
for i,p in enumerate(paramsets):
p.add(cplex.parameters.timelimit, 70+i)
p.add(cplex.parameters.mip.tolerances.mipgap, 0.000001*i)
p.add(cplex.parameters.threads, 2+i)
solve(model, clean_before_solve=True, parameter_sets=paramsets)
print(model.solve_details)
|