# --------------------------------------------------------------------------
# Source file provided under Apache License, Version 2.0, January 2004,
# http://www.apache.org/licenses/
# (c) Copyright IBM Corp. 2015, 2016
# --------------------------------------------------------------------------
from collections import defaultdict, namedtuple
from docplex.mp.constants import RelaxationMode
from docplex.mp.utils import is_function, apply_thread_limitations, _to_list
from docplex.mp.priority import Priority
from docplex.mp.constr import AbstractConstraint
from docplex.mp.error_handler import docplex_fatal
from docplex.mp.sdetails import SolveDetails
from docplex.util import as_df
from docplex.mp.publish import PublishResultAsDf
try:
import pandas as pd
except ImportError: # pragma: no cover
pd = None
TOutputTables = namedtuple('TOutputTables', ['Constraint', 'Priority', 'Amount'])
def to_output_table(relaxer, use_pd=True):
if pd and use_pd:
return as_df(relaxer)
else:
result = []
prioritizer = relaxer.prioritizer
for ct, relaxed in relaxer.iter_relaxations():
result.append(TOutputTables(ct.name,
prioritizer.get_priority_internal(ct).name,
relaxed))
return result
# noinspection PyAbstractClass
[docs]class Prioritizer(object):
''' Abstract base class for prioritizers.
This class acts like a functor to be called on each model constraint.
'''
def __init__(self, override=False):
self._override = override
def get_priority(self, ct):
raise NotImplementedError("base class") # pragma: no cover
def get_priority_internal(self, ct):
ct_prio = ct.priority
if not self._override and ct_prio:
return ct_prio
else:
return self.get_priority(ct)
class IRelaxationListener(object):
# INTERNAL
# ''' Base class for relaxation listeners.'''
def notify_start_relaxation(self, priority, relaxables):
''' This method is called at each step of the relaxation loop.'''
pass # pragma: no cover
def notify_failed_relaxation(self, priority, relaxables):
''' This method is called when a relaxation attempt fails.'''
pass # pragma: no cover
def notify_successful_relaxation(self, priority, relaxables, relaxed_obj_value, violations):
''' This method is called when a relaxation succeeds.'''
pass # pragma: no cover
class VerboseRelaxationListener(IRelaxationListener):
# INTERNAL
# ''' A default implementation of the listener, which prints messages.'''
def __init__(self):
IRelaxationListener.__init__(self)
self.relaxation_count = 0
def notify_start_relaxation(self, priority, relaxables):
self.relaxation_count += 1
print("-> relaxation #{0} starts with priority: {1!s}, #relaxables={2:d}"
.format(self.relaxation_count, priority.name, len(relaxables)))
def notify_failed_relaxation(self, priority, relaxables):
print("<- relaxation #{0} fails, priority: {1!s}, #relaxables={2:d}"
.format(self.relaxation_count, priority.name, len(relaxables)))
def notify_successful_relaxation(self, priority, relaxables, obj, violations):
print("<- relaxation #{0} succeeds: priority: {1!s}, #relaxables={2:d}, obj={3}, #relaxations={4}".
format(self.relaxation_count, priority.name, len(relaxables), obj, len(violations)))
[docs]class NamedPrioritizer(Prioritizer):
# INTERNAL
# """ Basic prioritizer that relaxes any constraint with a name.
#
# More precisely, the prioritizer logic works as follows:
#
# - If the constraint has a ``priority`` attribute, then it is assumed
# to hold a priority instance and use it.
# - If the constraint has a user-defined name, relax it with MEDIUM priority.
# - Otherwise, the constraint is not to be relaxed (that is, it is assigned MANDATORY priority).
#
# """
def __init__(self, priority=Priority.MEDIUM, override=False):
Prioritizer.__init__(self, override)
self._priority = priority
def get_priority(self, ct):
return self._priority if ct.has_user_name() else Priority.MANDATORY
[docs]class MatchNamePrioritizer(Prioritizer):
# INTERNAL
# """ Constraint prioritizer based on constraint names.
#
# This prioritizer analyzes constraint names for strings that match priority names.
# If a constraint contains a string which matches a priority name,
# then it is assigned this priority.
#
# If a constraint has a priority explicitly set by the ``priority`` attribute,
# this user priority is returned.
#
# Note:
# 1. Unnamed constraints are considered as non-matches.
# 2. String matching is not case sensitive.
#
# For example: a constraint named "ct_salary_low" will be considered as having the priority LOW.
# """
def __init__(self,
priority_for_unnamed=Priority.MANDATORY,
priority_for_non_matches=Priority.MANDATORY,
case_sensitive=False,
override=False):
Prioritizer.__init__(self, override)
assert isinstance(priority_for_unnamed, Priority)
assert isinstance(priority_for_non_matches, Priority)
self.priority_for_unnamed_cts = priority_for_unnamed
self.priority_for_non_matching_cts = priority_for_non_matches
self.priority_by_symbol = {prio.name.lower(): prio for prio in Priority}
self._is_case_sensitive = bool(case_sensitive)
[docs] def get_priority(self, ct):
''' Looks for known priority names inside constraint names.
'''
if not ct.has_user_name():
return self.priority_for_unnamed_cts
else:
ctname = ct.name
ctname_to_match = ctname if self._is_case_sensitive else ctname.lower()
best_matched = 0
best_matching_priority = self.priority_for_non_matching_cts
for (prio_symbol, prio) in self.priority_by_symbol.items():
if ctname_to_match.find(prio_symbol) >= 0:
matched = len(prio_symbol)
# longer matches are preferred
# e.g. very_low and low both match in very_low_ctxxx
# but the prioritizer will return very_low as the match is longer.
if matched > best_matched:
best_matched = matched
best_matching_priority = prio
return best_matching_priority
[docs]class MappingPrioritizer(Prioritizer):
# INTERNAL
# """
# Constraint prioritizer based on a dictionary of constraints and priorities.
#
# Initialized from a dictionary and an optional default priority.
#
# Args:
# priority_mapping: A dictionary with constraints as keys and priorities as values.
#
# default_priority: An optional priority, used when a constraint is not explicitly mentioned
# in the mapping. The default value is MANDATORY, meaning that any constraint not mentioned
# in the mapping will not be relaxed.
# """
def __init__(self, priority_mapping, default_priority=Priority.MANDATORY, override=False):
Prioritizer.__init__(self, override)
# --- typecheck that this dict is a a {ct: prio} mapping.
if not isinstance(priority_mapping, dict):
raise TypeError
for k, v in priority_mapping.items():
if not isinstance(k, AbstractConstraint):
raise TypeError
if not hasattr(v, 'cplex_preference'):
raise TypeError
# ---
self._mapping = priority_mapping
self._default_priority = default_priority
def get_priority(self, ct):
# return the dict's value for ct if nay, else its own priority or the default.
return self._mapping.get(ct, ct.priority or self._default_priority)
[docs]class FunctionalPrioritizer(Prioritizer):
def __init__(self, fn, override=False):
Prioritizer.__init__(self, override)
self._prioritize_fn = fn
def get_priority(self, ct):
return self._prioritize_fn(ct)
# internal named tuples
_TRelaxableGroup = namedtuple("_TRelaxableGroup", ["preference", "relaxables"])
_TParamData = namedtuple('_TParamInfo', ['short_name', 'default_value', 'accessor'])
[docs]class Relaxer(PublishResultAsDf, object):
''' This class is an abstract algorithm, in the sense that it operates on interfaces.
It takes a prioritizer, which an implementation of ``ConstraintPrioritizer``.
For convenience, predefined prioritizer types are accessible through names:
- `all` relaxes all constraints using a MEDIUM priority; this is the default.
- `named` relaxes all constraints with a user name but not the others.
- `match` looks for priority names within constraint names;
unnamed constraints are not relaxed.
Note:
All predefined prioritizers apply various forms of logic, but, when a constraint has been assigned
a priority by the user, this priority is always used. For example, the `named` prioritizer relaxes
all named constraints with MEDIUM, but if an unnamed constraint was assigned a HIGH priority,
then HIGH will be used.
See Also:
:class:`docplex.mp.priority.Priority`
'''
default_precision = 1e-5
_default_mode = RelaxationMode.OptSum
def __init__(self, prioritizer='all', verbose=False, precision=default_precision,
override=False, **kwargs):
self.output_table_customizer = kwargs.get('output_processing') # wml tables, internal
self.output_table_property_name = 'relaxations_output'
self.default_output_table_name = 'relaxations.csv'
self.output_table_using_df = True # if pandas is available of course
self._precision = precision
# ---
if hasattr(prioritizer, 'get_priority'):
self._prioritizer = prioritizer
elif prioritizer == 'match':
self._prioritizer = MatchNamePrioritizer(override=override)
elif isinstance(prioritizer, dict):
self._prioritizer = MappingPrioritizer(priority_mapping=prioritizer, override=override)
elif prioritizer == 'named':
self._prioritizer = NamedPrioritizer()
elif prioritizer is None or prioritizer == 'all':
self._prioritizer = UniformPrioritizer(override=override)
elif is_function(prioritizer):
self._prioritizer = FunctionalPrioritizer(prioritizer, override=override)
else:
print("Cannot deduce a prioritizer from: {0!r} - expecting \"name\"|\"default\"| dict", prioritizer)
raise TypeError
self._cumulative = True
self._listeners = []
# result data
self._last_relaxation_status = False
self._last_relaxation_objective = -1e+75
self._last_successful_relaxed_priority = Priority.MANDATORY
self._last_relaxation_details = SolveDetails.make_dummy()
self._relaxations = {}
self._verbose = verbose
self._verbose_listener = VerboseRelaxationListener()
if self._verbose:
self.add_listener(self._verbose_listener)
@property
def prioritizer(self):
return self._prioritizer
def set_verbose(self, is_verbose):
if is_verbose != self._verbose:
self._verbose = is_verbose
self.set_verbose_listener_from_flag(is_verbose)
def set_verbose_listener_from_flag(self, is_verbose):
if is_verbose:
self.add_listener(self._verbose_listener)
else:
self.remove_listener(self._verbose_listener)
def get_verbose(self):
return self._verbose
verbose = property(get_verbose, set_verbose)
def _check_successful_relaxation(self):
if not self._last_relaxation_status:
docplex_fatal("No relaxed solution is present")
def _reset(self):
# INTERNAL
self._last_relaxation_status = False
self._last_relaxation_objective = -1e+75
self._last_successful_relaxed_priority = Priority.MANDATORY
self._relaxations = {}
def _accept_violation(self, violation):
''' The filter method which accepts or rejects a violation.'''
return 0 == self._precision or abs(violation) >= self._precision
def add_listener(self, listener):
# INTERNAL
# """ Adds a relaxation listener.
#
# Args:
# listener: The new listener to add. If ``listener`` is not an
# instance of ``IRelaxationListener``, it is ignored.
#
# See Also:
# :class:`IRelaxationListener`
# """
if isinstance(listener, IRelaxationListener):
self._listeners.append(listener)
def remove_listener(self, listener):
# INTERNAL
# """ Removes a relaxation listener.
#
# Args:
# listener: The listener to remove.
# """
if listener in self._listeners:
self._listeners.remove(listener)
def clear_listeners(self):
# INTERNAL
# """ Removes all relaxation listeners.
# """
self._listeners = []
_param_data = {}
[docs] def relax(self, mdl, relax_mode=None, **kwargs):
""" Runs the relaxation loop.
Args:
mdl: The model to be relaxed.
relax_mode: the relaxation mode. Accept either None (in which case the default mode is
used, or an instance of ``RelaxationMode`` enumerated type, or a string
that can be translated to a relaxation mode.
kwargs: Accepts named arguments similar to ``solve``.
Returns:
If the relaxation succeeds, the method returns a solution object, an instance of ``SolveSolution``; otherwise returns None.
See Also:
:func:`docplex.mp.model.Model.solve`,
:class:`docplex.mp.solution.SolveSolution`,
:class:`docplex.mp.constants.RelaxationMode`
"""
self._reset()
# 1. build a dir {priority : cts}
priority_map = defaultdict(list)
nb_prioritized_cts = 0
mdl_priorities = set()
mandatory_justifier = None
nb_mandatories = 0
for ct in mdl.iter_constraints():
prio = self._prioritizer.get_priority_internal(ct)
if prio.is_mandatory():
nb_mandatories += 1
if mandatory_justifier is None:
mandatory_justifier = ct
else:
priority_map[prio].append(ct)
nb_prioritized_cts += 1
mdl_priorities.add(prio)
sorted_priorities = sorted(list(mdl_priorities), key=lambda p: p.value)
if 0 == nb_prioritized_cts:
mdl.error("Relaxation algorithm found no relaxable constraints - exiting")
return None
if nb_mandatories:
assert mandatory_justifier is not None
s_justifier = mandatory_justifier.to_readable_string()
mdl.warning('{0} constraint(s) will not be relaxed (e.g.: {1})', nb_mandatories, s_justifier)
temp_relax_verbose = kwargs.pop('verbose', False)
if temp_relax_verbose != self._verbose:
# install/deinstall listener for this relaxation only
self.set_verbose_listener_from_flag(temp_relax_verbose)
# relaxation loop
all_groups = []
all_relaxable_cts = []
is_cumulative = self._cumulative
# -- relaxation mode
if relax_mode is None:
used_relax_mode = self._default_mode
else:
used_relax_mode = RelaxationMode.parse(relax_mode)
if not mdl.is_optimized():
used_relax_mode = RelaxationMode.get_no_optimization_mode(used_relax_mode)
# save this for restore later
saved_context_log_output = mdl.context.solver.log_output
saved_log_output_stream = mdl.log_output
saved_context = mdl.context
# take into account local argument overrides
relax_context = mdl.prepare_actual_context(**kwargs)
transient_engine = False
relax_engine = mdl.get_engine()
if temp_relax_verbose:
print("-- starting relaxation. mode: {0!s}, precision={1}".format(used_relax_mode.name, self._precision))
try:
# mdl.context has been saved in saved_context above
mdl.context = relax_context
mdl.set_log_output(mdl.context.solver.log_output)
# engine parameters, if needed to
parameters = apply_thread_limitations(relax_context)
mdl._apply_parameters_to_engine(parameters)
relaxed_sol = None
for prio in sorted_priorities:
if prio in priority_map:
cts = priority_map[prio]
if not cts:
# this should not happen...
continue # pragma: no cover
pref = prio.cplex_preference
# build a new group
relax_group = _TRelaxableGroup(pref, cts)
# relaxing new batch of cts:
if not is_cumulative: # pragma: no cover
# if not cumulative reset the groupset
all_groups = [relax_group]
all_relaxable_cts = cts
else:
all_groups.append(relax_group)
all_relaxable_cts += cts
# at this stage we have a sequence of groups
# a group is itself a sequence of two components
# - a preference factor
# - a sequence of constraints
for ls in self._listeners:
ls.notify_start_relaxation(prio, all_relaxable_cts)
# ----
# call the engine.
# ---
try:
relaxed_sol = relax_engine.solve_relaxed(mdl, prio.name, all_groups, used_relax_mode)
finally:
self._last_relaxation_details = relax_engine.get_solve_details()
# ---
if relaxed_sol is not None:
relax_obj = relaxed_sol.objective_value
self._last_successful_relaxed_priority = prio
self._last_relaxation_status = True
self._last_relaxation_objective = relaxed_sol.objective_value
# filter irrelevant relaxations below some threshold
for ct in all_relaxable_cts:
raw_infeas = relaxed_sol.get_infeasibility(ct)
if self._accept_violation(raw_infeas):
self._relaxations[ct] = raw_infeas
if not self._relaxations:
mdl.warning(
"Relaxation of model `{0}` found one relaxed solution, but no relaxed constraints - check".format(
mdl.name))
for ls in self._listeners:
ls.notify_successful_relaxation(prio, all_relaxable_cts, relax_obj, self._relaxations)
# now get out
break
else:
# TODO: maybe issue a warning that relaxation has failed?
# relaxation has failed, notify the listeners
for ls in self._listeners:
ls.notify_failed_relaxation(prio, all_relaxable_cts)
mdl.notify_solve_relaxed(relaxed_sol, relax_engine.get_solve_details())
# write relaxation table.write_output_table() handles everything related to
# whether the table should be published etc...
if self.is_publishing_output_table(mdl.context):
output_table = to_output_table(self, self.output_table_using_df)
self.write_output_table(output_table, mdl.context)
finally:
# --- restore context, log_output if set.
if saved_log_output_stream != mdl.log_output:
mdl.set_log_output_as_stream(saved_log_output_stream)
if saved_context_log_output != mdl.context.solver.log_output:
mdl.context.solver.log_output = saved_context_log_output
mdl.context = saved_context
if transient_engine: # pragma: no cover
del relax_engine
if temp_relax_verbose != self._verbose:
# realign listener with flag
self.set_verbose_listener_from_flag(self._verbose)
return relaxed_sol
[docs] def iter_relaxations(self):
""" Iterates on relaxations.
Relaxations are built as a dictionary with constraints as keys and numeric violations as values,
so this iterator returns ``(ct, violation)`` pairs.
"""
self._check_successful_relaxation()
return iter(self._relaxations.items())
[docs] def relaxations(self):
""" Returns a dictionary with all relaxed constraints.
Returns:
A dictionary where the keys are the relaxed constraints,
and the values are the numerical slacks.
"""
return self._relaxations.copy()
def __as_df__(self):
''' Returns a pandas.DataFrame with all relaxed constraint.
Returns:
A pandas.DataFrame which columns are:
- Constraint: the constraint name
- Priority: The priority of the constraint
- Amount: The amount of relaxation
'''
if not pd: # pragma: no cover
raise NotImplementedError('Cannot convert results to DataFrame, pandas is not available')
columns = ['Constraint', 'Priority', 'Amount']
results_list = []
prioritizer = self.prioritizer
for ct, relaxed in self.iter_relaxations():
results_list.append({'Constraint': ct.name,
'Priority': prioritizer.get_priority_internal(ct).name,
'Amount': relaxed})
df = pd.DataFrame(results_list, columns=columns)
return df
def get_total_relaxation(self):
self._check_successful_relaxation()
return sum(abs(v) for v in self._relaxations.values())
@property
def total_relaxation(self):
return self.get_total_relaxation()
def print_information(self):
self._check_successful_relaxation()
print("* number of relaxations: {0}".format(len(self._relaxations)))
for rct, relaxation in self.iter_relaxations():
arg = rct.name if rct.has_user_name() else str(rct)
print(" - relaxed: {0}, with relaxation: {1}".format(arg, relaxation))
print("* total absolute relaxation: {0}".format(self.get_total_relaxation()))
def as_dict(self):
rxd = {rct.name or str(rct): relaxed for rct, relaxed in self.iter_relaxations()}
return rxd
@property
def relaxed_objective_value(self):
""" Returns the objective value of the relaxed solution.
Raises:
DOCplexException
If the relaxation has not been successful.
"""
self._check_successful_relaxation()
return self._last_relaxation_objective
@property
def number_of_relaxations(self):
""" This property returns the number of relaxations found.
"""
return len(self._relaxations)
[docs] def get_relaxation(self, ct):
""" Returns the infeasibility computed for this constraint.
Args:
ct: A constraint.
Returns:
The amount by which the constraint has been relaxed by the relaxer.
The method returns 0 if the constraint has not been relaxed.
"""
self._check_successful_relaxation()
return self._relaxations.get(ct, 0)
[docs] def is_relaxed(self, ct):
''' Returns true if the constraint ``ct`` has been relaxed
Args:
ct: The constraint to check.
Returns:
True if the constraint has been relaxed, else False.
'''
self._check_successful_relaxation()
return ct in self._relaxations
@classmethod
def run_feasopt(cls, model, relaxables, relax_mode):
relaxable_list = _to_list(relaxables)
groups = []
checker = model._checker
try:
for pref, ctseq in relaxable_list:
checker.typecheck_num(pref)
cts = _to_list(ctseq)
for ct in cts:
checker.typecheck_constraint(ct)
groups.append((pref, cts))
except ValueError:
model.fatal("expecting container with (preference, constraints), got: {0!s}", relaxable_list)
feasible = model.get_engine().solve_relaxed(mdl=model, relaxable_groups=groups,
prio_name='feasopt',
relax_mode=relax_mode)
return feasible